🎯Land Your Dream Job500+ Mock Interviews
Transform Your Tasks with AIGet 3x more done

Machine Learning for Everybody – Full Course

By - freeCodeCamp.org

📚 Course Information

Channel

freeCodeCamp.org

Published On

9/26/2022

📝 Description

Learn Machine Learning in a way that is accessible to absolute beginners. You will learn the basics of Machine Learning and how to use TensorFlow to implement many different concepts. ✏️ Kylie Ying developed this course. Check out her channel: https://www.youtube.com/c/YCubed ⭐️ Code and Resources ⭐️ 🔗 Supervised learning (classification/MAGIC): https://colab.research.google.com/drive/16w3TDn_tAku17mum98EWTmjaLHAJcsk0?usp=sharing 🔗 Supervised learning (regression/bikes): https://colab.research.google.com/drive/1m3oQ9b0oYOT-DXEy0JCdgWPLGllHMb4V?usp=sharing 🔗 Unsupervised learning (seeds): https://colab.research.google.com/drive/1zw_6ZnFPCCh6mWDAd_VBMZB4VkC3ys2q?usp=sharing 🔗 Dataets (add a note that for the bikes dataset, they may have to open the downloaded csv file and remove special characters) 🔗 MAGIC dataset: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope 🔗 Bikes dataset: https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand 🔗 Seeds/wheat dataset: https://archive.ics.uci.edu/ml/datasets/seeds 🏗 Google provided a grant to make this course possible. ⭐️ Contents ⭐️ ⌨️ (0:00:00) Intro ⌨️ (0:00:58) Data/Colab Intro ⌨️ (0:08:45) Intro to Machine Learning ⌨️ (0:12:26) Features ⌨️ (0:17:23) Classification/Regression ⌨️ (0:19:57) Training Model ⌨️ (0:30:57) Preparing Data ⌨️ (0:44:43) K-Nearest Neighbors ⌨️ (0:52:42) KNN Implementation ⌨️ (1:08:43) Naive Bayes ⌨️ (1:17:30) Naive Bayes Implementation ⌨️ (1:19:22) Logistic Regression ⌨️ (1:27:56) Log Regression Implementation ⌨️ (1:29:13) Support Vector Machine ⌨️ (1:37:54) SVM Implementation ⌨️ (1:39:44) Neural Networks ⌨️ (1:47:57) Tensorflow ⌨️ (1:49:50) Classification NN using Tensorflow ⌨️ (2:10:12) Linear Regression ⌨️ (2:34:54) Lin Regression Implementation ⌨️ (2:57:44) Lin Regression using a Neuron ⌨️ (3:00:15) Regression NN using Tensorflow ⌨️ (3:13:13) K-Means Clustering ⌨️ (3:23:46) Principal Component Analysis ⌨️ (3:33:54) K-Means and PCA Implementations 🎉 Thanks to our Champion and Sponsor supporters: 👾 Raymond Odero 👾 Agustín Kussrow 👾 aldo ferretti 👾 Otis Morgan 👾 DeezMaster -- Learn to code for free and get a developer job: https://www.freecodecamp.org Read hundreds of articles on programming: https://freecodecamp.org/news

🎯 What You'll Learn

Complete understanding of the topic

Hands-on practical knowledge

Real-world examples and use cases

Industry best practices

⭐ Course Features

🤖

AI Support

24/7 doubt solving

📝

Practice Quiz

Test your knowledge

🏆

Certificate

Course completion

📋 Prerequisites

  • Basic understanding of programming concepts

  • Eagerness to learn and practice

Premium

Get Full Course Access

Take your learning to the next level with premium features

Unlimited access to all chapters
Interactive quizzes & assessments
Downloadable certificate

Course Content

Introduction Section (0 sec - 29 min)
1
29 min

Introduction Section (0 sec - 29 min)

5 Questions Ready
Main Content Section 1 (29 min - 58 min)
2
29 min

Main Content Section 1 (29 min - 58 min)

5 Questions Locked
Main Content Section 2 (58 min - 1 hour 27 min)
3
29 min

Main Content Section 2 (58 min - 1 hour 27 min)

5 Questions Locked
Main Content Section 3 (1 hour 27 min - 1 hour 56 min)
4
29 min

Main Content Section 3 (1 hour 27 min - 1 hour 56 min)

5 Questions Locked
Main Content Section 4 (1 hour 56 min - 2 hour 26 min)
5
29 min

Main Content Section 4 (1 hour 56 min - 2 hour 26 min)

5 Questions Locked
Main Content Section 5 (2 hour 26 min - 2 hour 55 min)
6
29 min

Main Content Section 5 (2 hour 26 min - 2 hour 55 min)

5 Questions Locked
Main Content Section 6 (2 hour 55 min - 3 hour 24 min)
7
29 min

Main Content Section 6 (2 hour 55 min - 3 hour 24 min)

5 Questions Locked
Final Section (3 hour 24 min - 3 hour 53 min)
8
29 min

Final Section (3 hour 24 min - 3 hour 53 min)

5 Questions Locked
AI Mentor