MIT Introduction to Deep Learning 6.S191: Lecture 4 Deep Generative Modeling Lecturer: Ava Amini 2023 Edition For all lectures, slides, and lab materials: http://introtodeeplearning.com Lecture Outline 0:00 - Introduction 5:48 - Why care about generative models? 7:33 - Latent variable models 9:30 - Autoencoders 15:03 - Variational autoencoders 21:45 - Priors on the latent distribution 28:16 - Reparameterization trick 31:05 - Latent perturbation and disentanglement 36:37 - Debiasing with VAEs 38:55 - Generative adversarial networks 41:25 - Intuitions behind GANs 44:25 - Training GANs 50:07 - GANs: Recent advances 50:55 - Conditioning GANs on a specific label 53:02 - CycleGAN of unpaired translation 56:39 - Summary of VAEs and GANs 57:17 - Diffusion Model sneak peak Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!